19 research outputs found

    Variability of sclerosis along the longitudinal hippocampal axis in epilepsy: A post mortem study

    Get PDF
    Detailed neuropathological studies of the extent of hippocampal sclerosis (HS) in epilepsy along the longitudinal axis of the hippocampus are lacking. Neuroimaging studies of patients with temporal lobe epilepsy support that sclerosis is not always localised. The extent of HS is of relevance to surgical planning and poor outcomes may relate to residual HS in the posterior remnant. In 10 post mortems from patients with long histories of drug refractory epilepsy and 3 controls we systematically sampled the left and right hippocampus at seven coronal anatomical levels along the body to the tail. We quantified neuronal densities in CA1 and CA4 subfields at each level using Cresyl Violet (CV), calretinin (CR), calbindin (CB) and Neuropeptide Y (NPY) immunohistochemistry. In the dentate gyrus we graded the extent of granule cell dispersion, patterns of CB expression, and synaptic reorganisation with CR and NPY at each level. We identified four patterns of HS based on patterns of pyramidal and interneuronal loss and dentate gyrus reorganisation between sides and levels as follows: (1) symmetrical HS with anterior–posterior (AP) gradient, (2) symmetrical HS without AP gradient, (3) asymmetrical HS with AP gradient and (4) asymmetrical cases without AP gradient. We confirmed in this series that HS can extend into the tail. The patterns of sclerosis (classical versus atypical or none) were consistent between all levels in less than a third of cases. In conclusion, this series highlights the variability of HS along the longitudinal axis. Further studies are required to identify factors that lead to focal versus diffuse HS

    Dravet syndrome as epileptic encephalopathy: Evidence from long-term course and neuropathology

    Get PDF
    Dravet syndrome is an epilepsy syndrome of infantile onset, frequently caused by SCN1A mutations or deletions. Its prevalence, long-term evolution in adults and neuropathology are not well known. We identified a series of 22 adult patients, including three adult post-mortem cases with Dravet syndrome. For all patients, we reviewed the clinical history, seizure types and frequency, antiepileptic drugs, cognitive, social and functional outcome and results of investigations. A systematic neuropathology study was performed, with post-mortem material from three adult cases with Dravet syndrome, in comparison with controls and a range of relevant paediatric tissue. Twenty-two adults with Dravet syndrome, 10 female, were included, median age 39 years (range 20–66). SCN1A structural variation was found in 60% of the adult Dravet patients tested, including one post-mortem case with DNA extracted from brain tissue. Novel mutations were described for 11 adult patients; one patient had three SCN1A mutations. Features of Dravet syndrome in adulthood include multiple seizure types despite polytherapy, and age-dependent evolution in seizure semiology and electroencephalographic pattern. Fever sensitivity persisted through adulthood in 11 cases. Neurological decline occurred in adulthood with cognitive and motor deterioration. Dysphagia may develop in or after the fourth decade of life, leading to significant morbidity, or death. The correct diagnosis at an older age made an impact at several levels. Treatment changes improved seizure control even after years of drug resistance in all three cases with sufficient follow-up after drug changes were instituted; better control led to significant improvement in cognitive performance and quality of life in adulthood in two cases. There was no histopathological hallmark feature of Dravet syndrome in this series. Strikingly, there was remarkable preservation of neurons and interneurons in the neocortex and hippocampi of Dravet adult post-mortem cases. Our study provides evidence that Dravet syndrome is at least in part an epileptic encephalopathy

    Bottom trawl fishing footprints on the world’s continental shelves

    Get PDF
    Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from 50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≀0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≀0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing

    Histone H3.3 beyond cancer: Germline mutations in Histone 3 Family 3A and 3B cause a previously unidentified neurodegenerative disorder in 46 patients

    Get PDF
    Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    Paroxysmal Cerebral Disorder

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Investigation of hypoxia-inducible factor-1α in hippocampal sclerosis: A postmortem study

    No full text
    Purpose: Hypoxia-inducible factor-1α (HIF-1α) is involved in critical aspects of cell survival in response to hypoxia and regulates vascular endothelial growth factor (VEGF) expression. Previous experimental and human studies in epilepsy show up-regulation of VEGF following seizures, although expression of HIF-1α as its potential regulator has not been explored. We used a postmortem (PM) series from patients with epilepsy and hippocampal sclerosis (HS) to investigate patterns of expression of HIF-1α and VEGF and their potential contribution to neuroprotection. Method: In 33 PMs (17 cases with unilateral HS, 3 with bilateral HS, 3 with No-HS, and 10 controls), we quantified neuronal immunolabeling for HIF-1α and VEGF in hippocampal subfields. Key Findings: HIF-1α- and VEGF-immunopositive hippocampal neurones were observed in HS, No-HS, and also in control cases; there was no significant difference in overall labeling between epilepsy cases and controls. In positive cases, HIF-1α and VEGF neuronal labeling localized primarily in CA1, CA4, and CA3 subfields in all groups; significantly more positive neurons were seen in the entorhinal cortex in epilepsy cases (p < 0.05). Labeling lateralized to the side of sclerosis in unilateral HS cases, with significant differences between hemispheres (p < 0.05). There was a trend for high HIF-1α labeling scores in patients with Dravet syndrome without HS and sudden unexpected death in epilepsy (SUDEP) cases, and lower scores with long seizure-free periods prior to death. Hippocampal HIF-1α and VEGF labeling showed a significant correlation. There was neuronal colocalization of HIF-1α and VEGF. Significance: Regional expression patterns are in keeping with seizure-related activation of HIF-1α and VEGF. The prominent expression in non-HS cases could support an overall neuroprotective effect. Correlation between HIF-1α and VEGF neuronal immunolabeling supports HIF-1α–mediated induction of VEGF in epilepsy

    LINS1-associated neurodevelopmental disorder family with novel mutation expands the phenotypic spectrum.

    Get PDF
    Objective Clinical, neuroimaging, and genetic characterization of 3 patients with LINS1-associated developmental regression, intellectual disability, dysmorphism, and further neurologic deficits. Methods Three affected brothers from a consanguineous family from Afghanistan, their 2 healthy siblings, and both parents were all assessed in the clinic. General and neurologic examination, expert dysmorphology examination, and 3T brain MRI were performed. Whole-exome sequencing was performed for the 3 affected brothers, followed by Sanger sequencing in all available family members. Results The index patient and his 2 affected brothers presented a complex neurologic syndrome with similar features but marked intrafamilial phenotypical variability, including varying degrees of cognitive impairment, speech impairment, dystonia, abnormal eye movements, and dysmorphic features. All 3 affected brothers are homozygous for a novel, pathogenic frameshift mutation in LINS1, c.1672_1679del, and p.Gly558Profs*22, whereas both parents and healthy siblings are heterozygous for the mutation. No major brain malformations were evident in 3T brain MRI of the affected brothers. Conclusion This consanguineous family with a novel mutation expands the spectrum of LINS1-associated disorder to include developmental regression, oculomotor signs, and dystonia, previously not described in the published 9 cases of this rare disorder. The 3T-MRI data from our 3 patients and review of the neuroimaging data in the literature showed unspecific brain MRI changes. LINS1 protein is a known modulating factor of the Wnt signaling pathway, with important roles in organogenesis including of the cerebral cortex. More research is warranted to disentangle the underlying pathophysiologic mechanisms, leading to cognitive impairment and the complex phenotype of LINS1-associated disorder

    Neuropathology of the blood-brain barrier and pharmaco-resistance in human epilepsy

    No full text
    Blood–brain barrier dysfunction is implicated in various neurological conditions. Modulating the blood–brain barrier may have therapeutic value. Progress is hindered by our limited understanding of the pathophysiology of the blood–brain barrier in humans, partly due to restricted availability of human tissue, and because human tissue can only provide limited data about temporal patterns of change. We addressed these important challenges by examining surgically resected brain tissue with various lengths of interval between intracranial depth electrode-related injury and resection, and post-mortem whole brain from patients with drug-sensitive or drug-resistant chronic epilepsy and controls. In this valuable set of resources, we found that: (i) there is a highly localized overexpression of P-glycoprotein in the epileptogenic hippocampus of patients with drug-resistant epilepsy; (ii) this overexpression appears specific to P-glycoprotein and does not affect other transporters; (iii) P-glycoprotein is expressed on the vascular endothelium and end-feet of vascular glia (forming a ‘double cuff’) in drug-resistant epileptic cases but not in post-mortem controls or surgical epilepsy tissue with electrode-related injuries; (iv) an acute insult from intracranial electrode recording causes localized inflammation, increased blood–brain barrier permeability and structural changes to vasculature detectable for up to at least 330 days and (v) chronic epilepsy is associated with inflammation, enhanced blood–brain barrier permeability and increased P-glycoprotein expression. The occurrence of seizures appears central to P-glycoprotein overexpression. Our findings have potential clinical impact because they directly improve our understanding of blood–brain barrier disruption and transporter expression in humans. In particular, our findings show that the expression of P-glycoprotein in humans is compatible with the inherent assumptions of one current hypothesis of multidrug resistance, and that the specific upregulation of P-glycoprotein expression is likely to be associated with ongoing chronic seizures. There may be a therapeutic window after initial acute injury for the prevention of P-glycoprotein overexpression, and thus this one potential component of drug resistance. Our findings add to the need for careful consideration of the benefit and risks of invasive electroencephalographic recording in surgical evaluation of drug-resistant epilepsy
    corecore